Understanding about DOCKER..

Docker logo

What is Docker?

Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your applications. By taking advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the delay between writing code and running it in production.

What can you use Docker for?

Fast, consistent delivery of your applications

Docker streamlines the development lifecycle by allowing developers to work in standardized environments using local containers which provide your applications and services. Containers are great for continuous integration and continuous delivery (CI/CD) workflows.

Responsive deployment and scaling

Docker’s container-based platform allows for highly portable workloads. Docker containers can run on a developer’s local laptop, on physical or virtual machines in a data center, on cloud providers, or in a mixture of environments.

Docker’s portability and lightweight nature also make it easy to dynamically manage workloads, scaling up or tearing down applications and services as business needs dictate, in near real time.

Running more workloads on the same hardware

Docker is lightweight and fast. It provides a viable, cost-effective alternative to hypervisor-based virtual machines, so you can use more of your compute capacity to achieve your business goals. Docker is perfect for high density environments and for small and medium deployments where you need to do more with fewer resources.

Docker architecture

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which does the heavy lifting of building, running, and distributing your Docker containers. The Docker client and daemon can run on the same system, or you can connect a Docker client to a remote Docker daemon. The Docker client and daemon communicate using a REST API, over UNIX sockets or a network interface. Another Docker client is Docker Compose, that lets you work with applications consisting of a set of containers.

Docker Architecture
  1. Docker Client: This is how you interact with your containers. Call it the user interface for Docker.
  2. Docker Objects: These are your main components of Docker: your containers and images. We mentioned already that containers are the placeholders for your software, and can be read and written to. Container images are read-only, and used to create new containers.
  3. Docker Daemon: A background process responsible for receiving commands and passing them to the containers via command line.
  4. Docker Registry: Commonly known as Docker Hub, this is where your container images are stored and retrieved.

Docker and security

Docker Security

Docker brings security to applications running in a shared environment, but containers by themselves are not an alternative to taking proper security measures.

Dan Walsh, a computer security leader best known for his work on SELinux, gives his perspective on the importance of making sure Docker container are secure. He also provides a detailed breakdown of security features currently within Docker, and how they function.

Docker objects

When you use Docker, you are creating and using images, containers, networks, volumes, plugins, and other objects. This section is a brief overview of some of those objects.

Docker Objects

Images

An image is a read-only template with instructions for creating a Docker container. Often, an image is based on another image, with some additional customization. For example, you may build an image which is based on the ubuntu image, but installs the Apache web server and your application, as well as the configuration details needed to make your application run.

You might create your own images or you might only use those created by others and published in a registry. To build your own image, you create a Dockerfile with a simple syntax for defining the steps needed to create the image and run it. Each instruction in a Dockerfile creates a layer in the image. When you change the Dockerfile and rebuild the image, only those layers which have changed are rebuilt. This is part of what makes images so lightweight, small, and fast, when compared to other virtualization technologies.

Containers

A container is a runnable instance of an image. You can create, start, stop, move, or delete a container using the Docker API or CLI. You can connect a container to one or more networks, attach storage to it, or even create a new image based on its current state.

By default, a container is relatively well isolated from other containers and its host machine. You can control how isolated a container’s network, storage, or other underlying subsystems are from other containers or from the host machine.

A container is defined by its image as well as any configuration options you provide to it when you create or start it. When a container is removed, any changes to its state that are not stored in persistent storage disappear.

  • Example: docker run” command

The following command runs an ubuntu container, attaches interactively to your local command-line session, and runs /bin/bash.

$ docker run -i -t ubuntu /bin/bash

When you run this command, the following happens (assuming you are using the default registry configuration):

  1. If you do not have the ubuntu image locally, Docker pulls it from your configured registry, as though you had run “docker pull ubuntu” manually.
  2. Docker creates a new container, as though you had run a “docker container create” command manually.
  3. Docker allocates a read-write filesystem to the container, as its final layer. This allows a running container to create or modify files and directories in its local filesystem.
  4. Docker creates a network interface to connect the container to the default network, since you did not specify any networking options. This includes assigning an IP address to the container. By default, containers can connect to external networks using the host machine’s network connection.
  5. Docker starts the container and executes /bin/bash. Because the container is running interactively and attached to your terminal (due to the -i and -t flags), you can provide input using your keyboard while the output is logged to your terminal.
  6. When you type exit to terminate the /bin/bash command, the container stops but is not removed. You can start it again or remove it.

Docker vs. Virtual Machine

Depicted below is a diagrammatic representation of how an application looks when deployed on Docker and virtual machines

Docker vs VMs

Differences between VMs vs Docker:

VMs vs Docker Differences

Advantages of Docker

Docker Advantages
  • Multiple OS support (Debian, Fedora, Windows, RHEL).
  • Run applications anywhere without any concern on the tooling and dependencies.
  • Security (build with security regulations).
  • Support for CI/CD and ideal platform for microservices development.
  • Support in multiple cloud providers (ECS).
  • Support in multiple container orchestration.

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store